Xylose induces cellulase production in Thermoascus aurantiacus
نویسندگان
چکیده
Background Lignocellulosic biomass is an important resource for renewable production of biofuels and bioproducts. Enzymes that deconstruct this biomass are critical for the viability of biomass-based biofuel production processes. Current commercial enzyme mixtures have limited thermotolerance. Thermophilic fungi may provide enzyme mixtures with greater thermal stability leading to more robust processes. Understanding the induction of biomass-deconstructing enzymes in thermophilic fungi will provide the foundation for strategies to construct hyper-production strains. Results Induction of cellulases using xylan was demonstrated during cultivation of the thermophilic fungus Thermoascus aurantiacus. Simulated fed-batch conditions with xylose induced comparable levels of cellulases. These fed-batch conditions were adapted to produce enzymes in 2 and 19 L bioreactors using xylose and xylose-rich hydrolysate from dilute acid pretreatment of corn stover. Enzymes from T. aurantiacus that were produced in the xylose-fed bioreactor demonstrated comparable performance in the saccharification of deacetylated, dilute acid-pretreated corn stover when compared to a commercial enzyme mixture at 50 °C. The T. aurantiacus enzymes retained this activity at of 60 °C while the commercial enzyme mixture was largely inactivated. Conclusions Xylose induces both cellulase and xylanase production in T. aurantiacus and was used to produce enzymes at up to the 19 L bioreactor scale. The demonstration of induction by xylose-rich hydrolysate and saccharification of deacetylated, dilute acid-pretreated corn stover suggests a scenario to couple biomass pretreatment with onsite enzyme production in a biorefinery. This work further demonstrates the potential for T. aurantiacus as a thermophilic platform for cellulase development.
منابع مشابه
Investigating Cellulase Producing Potential of Two Iranian Thermoascus aurantiacus Isolates in Submerged Fermentation
Cellulose is the most plentiful renewable biopolymer in nature which could be utilized by cellulolytic enzymes. Cellulases are among the most important groups of industrial enzymes which are widely consumed in biofuel production, pulp and paper, textile, and detergent industries. These enzymes can support a cleaner environment through reducing chemical processes in mentioned industries and agro...
متن کاملPurification and properties of an endoglucanase from Thermoascus aurantiacus
An Endo-cellulase was purified to homogeneity using ammonium sulfate precipitation, ion exchange and size exclusion chromatography from newly isolated strain of Thermoascus aurantiacus RBB-1. The recovery and purification fold were 13.3% and 6.6, respectively, after size exclusion chromatography. The purified cellulase has a molecular mass (M) of 35 kDa. Optimum temperature for the enzyme was f...
متن کاملUse of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose
Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes wer...
متن کاملThermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw
BACKGROUND In the hydrolysis of lignocellulosic materials, thermostable enzymes decrease the amount of enzyme needed due to higher specific activity and elongate the hydrolysis time due to improved stability. For cost-efficient use of enzymes in large-scale industrial applications, high-level expression of enzymes in recombinant hosts is usually a prerequisite. The main aim of the present study...
متن کاملSubstrate specificity and mode of action of the cellulases from the thermophilic fungus Thermoascus aurantiacus.
The substrate specificities of three cellulases and a beta-glucosidase purified from Thermoascus aurantiacus were examined. All three cellulases partially degraded native cellulose. Cellulase I, but not cellulase II and cellulase III, readily hydrolyzed the mixed beta-1,3; beta-1,6-polysaccharides such as carboxymethyl-pachyman, yeast glucan and laminarin. Both cellulase I and the beta-glucosid...
متن کامل